Possibilistic Graphical Models

نویسندگان

  • Christian Borgelt
  • Rudolf Kruse
چکیده

Graphical modeling is an important method to efficiently represent and analyze uncertain information in knowledge-based systems. Its most prominent representatives are Bayesian networks and Markov networks for probabilistic reasoning, which have been well-known for over ten years now. However, they suffer from certain deficiencies, if imprecise information has to be taken into account. Therefore possibilistic graphical modeling has recently emerged as a promising new area of research. Possibilistic networks are a noteworthy alternative to probabilistic networks whenever it is necessary to model both uncertainty and imprecision. Imprecision, understood as set-valued data, has often to be considered in situations in which information is obtained from human observers or imprecise measuring instruments. In this paper we provide an overview on the state of the art of possibilistic networks w.r.t. to propagation and learning algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning possibilistic graphical models from data

Graphical models—especially probabilistic networks like Bayes networks and Markov networks—are very popular to make reasoning in high-dimensional domains feasible. Since constructing them manually can be tedious and time consuming, a large part of recent research has been devoted to learning them from data. However, if the dataset to learn from contains imprecise information in the form of sets...

متن کامل

Reasoning with Uncertain Inputs in Possibilistic Networks

Graphical belief models are compact and powerful tools for representing and reasoning under uncertainty. Possibilistic networks are graphical belief models based on possibility theory. In this paper, we address reasoning under uncertain inputs in both quantitative and qualitative possibilistic networks. More precisely, we first provide possibilistic counterparts of Pearl’s methods of virtual ev...

متن کامل

Interventions and belief change in possibilistic graphical models

Article history: Received 11 September 2009 Accepted 20 September 2009 Available online 17 November 2009 Causality and belief change play an important role in many applications. This paper focuses on the main issues of causality and interventions in possibilistic graphical models. We show that interventions, which are very useful for representing causal relations between events, can be naturall...

متن کامل

Mouse Movement and Probabilistic Graphical Models Based E-Learning Activity Recognition Improvement Possibilistic Model

Automatically recognizing the e-learning activities is an important task for improving the online learning process. Probabilistic graphical models such as Hidden Markov Models and Conditional Random Fields have been successfully used in order to identify a web user activity. For such models, the sequences of observation are crucial for training and inference processes. Despite the efficiency of...

متن کامل

Data Mining with Possibilistic Graphical Models

Data Mining, also called Knowledge Discovery in Databases, is a young area of research, which has emerged in response to the flood of data we are faced with nowadays. It has taken up the challenge to develop techniques that can help humans discover useful patterns in their data. One such technique—which certainly is among the most important, as it can be used for frequent data mining tasks like...

متن کامل

Learning possibilistic networks from data: a survey

Possibilistic networks are important tools for modelling and reasoning, especially in the presence of imprecise and/or uncertain information. These graphical models have been successfully used in several real applications. Since their construction by experts is complex and time consuming, several researchers have tried to learn them from data. In this paper, we try to present and discuss releva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002